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1. Introduction.

A special case of a conjecture commonly attributed to Emil Artin

[1] states that if we consider a system of two additive homogeneous

equations

(1)
a1x

k
1 + a2x

k
2 + · · ·+ asx

k
s = 0

b1x
n
1 + b2x

n
2 + · · ·+ bsx

n
s = 0,

with all coefficients in Q and with s ≥ k2 + n2 + 1, then this system

should have a nontrivial solution in p-adic integers for each prime p.

That is, the system should have a solution with at least one variable

not equal to zero. By work of Brauer [3], it is known that there exists

a finite bound on s in terms of k and n which guarantees nontrivial
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solutions, so the only question is whether the conjectured bound suf-

fices. The purpose of this paper is to prove that the conjectured bound

does suffice when the degrees k and n are both odd.

In order to describe the previous work on this problem, we introduce

a small amount of notation. For each prime p, we write Γ∗p(k, n) for

the smallest value of s which guarantees that the system (1) with co-

efficients in Q will have a nontrivial p-adic solution regardless of the

values of those coefficients. Further, we define

Γ∗(k, n) = max
p prime

Γ∗p(k, n).

Also, for any field K, we define Γ∗(k, n,K) to be the smallest s guar-

anteeing that if the coefficients of (1) lie in K, then the system must

have a nontrivial solution with variables in K. Note that we have

Γ∗p(k, n) ≤ Γ∗(k, n,Qp) and

Γ∗(k, n) ≤ max
p prime

Γ∗(k, n,Qp).

We will occasionally use implicitly the obvious facts that Γ∗p(k, n) =

Γ∗p(n, k) for each prime p and that Γ∗(k, n) = Γ∗(n, k).

With this notation, the aforementioned result of Brauer shows that

Γ∗(k, n) exists for each pair of degrees, and Artin’s conjecture can be
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restated as claiming that one always has Γ∗(k, n) ≤ k2 + n2 + 1. If

we only have one homogeneous additive equation of degree k, then we

define Γ∗p(k), Γ∗(k), and Γ∗(k,K) similarly. Davenport & Lewis [7] have

shown that Γ∗(k) ≤ k2 + 1 for all k, with equality whenever k + 1 is

prime, confirming another special case of Artin’s conjecture.

One typically bounds functions such as Γ∗(k, n) or Γ∗(k) by obtaining

a bound on Γ∗(k, n,Qp) in terms of p, and then finding the maximum of

this bound. As a consequence of this, it is not important in the proofs

of any of the bounds mentioned in this article that the coefficients are

rational. All of these bounds apply to (systems of) equations in which

the coefficients may be any elements of Qp.

Most previous work on the problem with two equations has dealt

with the situation when both of the forms have the same degree. If the

degrees are equal and odd, then Davenport & Lewis [8] showed that

the conjecture is true. When the degrees are equal and even, Brüdern

& Godinho [4] have shown that if the degree cannot be written either

as pτ (p − 1) with p prime and τ ≥ 1, or as 3 · 2τ with τ ≥ 1, then

the conjecture is true. Even when the degree does have one of these

special shapes there are no known counterexamples, so the conjecture
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could well be true for these degrees also.

When the degrees are different, much less is known. Leep & Schmidt

[13] have proven that Γ∗(k, n) ≤ (k2 + 1)(n2 + 1). A few years ago,

the author proved [12] that Γ∗(k, n) < 64(k + 2n)(k + n)(k − n)2,

and also that if the degree k is odd (with no restrictions on n), then

Γ∗(k, n) ≤ k2 + 2n2 + 1. It is also trivial to show from results in the

literature that Γ∗(3, 1) ≤ 11. A result of Lewis [14] shows that 10 vari-

ables is sufficient for a single (not necessarily diagonal) cubic form, and

the work of Leep & Schmidt [13] shows that if we add a linear form,

then only one additional variable is required.

The main goal of this article is to prove the following theorem.

Theorem 1. If k and n are both positive odd integers, then we have

Γ∗(k, n) ≤ k2 + n2 + 1.

That is, we will prove that Artin’s conjecture for two additive forms

is correct when the degrees of the forms are both odd. As mentioned

above, we prove Theorem 1 by working with p-adic coefficients in gen-

eral. Thus, Theorem 1 is a consequence of the following slightly more

general theorem.
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Theorem 2. If k and n are both positive odd integers and p is prime,

then Γ∗(k, n,Qp) ≤ k2 + n2 + 1.

The underlying idea of our proof is simple. By the result of Davenport

& Lewis mentioned above, we may assume that k 6= n. In Section 2,

we will first assume that s ≥ k2 +n2 +1, and construct a linear space of

large dimension on which one of the forms is identically zero. Then we

will show that the other form has a solution in this linear space. This

plan involves studying the solutions of one equation at a time, and so

we are led to study the values of Γ∗(k) for k odd, and in Section 3 we

will prove the following result.

Theorem 3. Suppose that k ≥ 7 is an odd integer. Then we have

Γ∗(k) ≤ (k2 + 1)/2. Additionally, we have the following values of and

bounds on Γ∗(k):

Γ∗(13) = 53 Γ∗(23) = 116

Γ∗(15) = 61 Γ∗(25) = 101

Γ∗(17) = 52 Γ∗(27) ≤ 271

Γ∗(19) = 58 Γ∗(29) ≤ 291.

Γ∗(21) = 106
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We point out here as an aside the interesting fact that Γ∗(17) < Γ∗(13).

This shows that if we restrict to odd values of k, or even to prime val-

ues, then Γ∗(k) is not an increasing function.

Our proof of Theorem 3 uses a hodgepodge of techniques. Again

we proceed by studying the more general function Γ∗(k,Qp). First, we

use a theorem of Tietäväinen [16] to show that Theorem refthmc is

true for all odd k ≥ 31. For the other degrees, we use several different

results from the literature (see [5] and [9]) to show that our bound is

true for the majority of primes p. When there exist primes not handled

by these theorems, we use a brute force computation to complete the

proof. (In the later stages of our work, we discovered that the method

used to effect this computation is extremely similar to that used by

Bierstedt in [2].) Here we make great use of a result of Norton [15, p.

165] which gives lower bounds for the values of Γ∗(k) for odd k ≤ 25.

In fact, it turns out that in each case, Norton’s lower bound is the cor-

rect value. We note that some of our work to prove Theorem refthmc

overlaps the proof of Theorem 3.1 of [10]. In this theorem, the authors

study a congruence equation which we need in our proof and obtain

the same result as we do, but with a few added conditions that we do
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not need.

Since Theorem 3 is only valid for degrees greater than 5, we will see

that the proof given in Section 2 does not quite work when one degree

is 5 and the other is either 3 or 1. We will treat this case in Section 4

through a small modification of the ideas in Sections 2 and 3. To com-

plete the proof, we need the following “folklore” result that we have

seen implied in the literature and have heard in private discussions.

Result. We have Γ∗(5) = 16. Moreover, p = 11 is the only prime

for which 16 variables are needed. For all other primes, we have

Γ∗p(5) ≤ 11.

A brief discussion of this result is in order. This result has on occa-

sion been attributed to J. F. Gray, but this is not entirely correct. In

his dissertation, Gray [11] proves that Γ∗p(5) ≤ 16 for all p 6= 5, and

gives an example showing that Γ∗11(5) = 16. Later, S. Chowla [6] gave

a brief sketch of a method to deal with the case when p = 5. Although

Gray does give the example for p = 11, his work does not show (and

we note that it does not claim to show) that Γ∗p(5) < 16 for all other

primes. Since we use the same method to verify this result as we use
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to prove Theorem 3, we treat this result in Section 3.

1.1. Acknowledgements. Much of the research contained in this pa-

per was done while the author was supported by NSF grant DMS-

0344082. This research was completed and the paper was written while

the author was enjoying the hospitality of the Universidade de Braśılia

while on sabbatical leave. Finally, the author would like to thank the

anonymous referee for pointing out an error in the original version of

this article, and also for helpful suggestions which have improved the

exposition.

2. The Proof of Theorem 2

2.1. Preliminaries. In this subsection, we will record two preliminary

results that are needed in the proof of Theorem 2. Then in Section 2.2

we show that Theorem 2 follows from Theorem 3 when the largest de-

gree is at least 7.

The first lemma is due to the author, and is proved on pages 153-154

of [12], although it is not explicitly stated. This lemma will help us to

deal with the case when p = 2.
8



Lemma 1. If k is a positive odd integer, then we have Γ∗2(k, n) ≤

2n2 + k + 1.

Our other lemma is Lemma 7 of [12]. We will use this lemma to help

us find linear spaces of zeros of forms.

Lemma 2. Suppose that p is an odd prime, n is a positive integer, and

c1, . . . , cs are p-adic integers which are not divisible by p. If s ≥ n+ 1,

then there exist distinct indices i and j such that ci/cj is a n-th power

in Zp.

In [12], it is only claimed that ci/cj is an n-th power in Qp, but it is

easy to see that this term (and its n-th root) actually lie in Zp.

2.2. The Proof when k ≥ 7. By the result of Davenport & Lewis

mentioned in the introduction, the theorem is true if k = n, so we may

suppose without loss of generality that k > n, and hence that k ≥ 7.

Assume also that we have s ≥ k2 + n2 + 1.

We note first that the case p = 2 is trivial (even if k < 7) by Lemma

1. This lemma implies that the system has nontrivial 2-adic solutions

whenever s ≥ 2n2 + k + 1. However, since k > n and both numbers

are odd, we have k ≥ n+ 2. This implies that k(k − 1) > n2, and this
9



immediately implies that

k2 + n2 + 1 > 2n2 + k + 1.

Hence we have more than enough variables to guarantee nontrivial 2-

adic solutions.

Now we turn to the case p ≥ 3. If necessary, we multiply each

equation by a constant to ensure that all of the coefficients in (1) are

integers. Consider the coefficients b1, . . . , bs in the form of degree n. If

there exist nonzero coefficients bi such that pn|bi, then we can make a

change of variables of the form x′i = pαnxi to absorb all the powers of

pn dividing bi into the variable xi. Thus we may assume that if bi 6= 0

and pg|bi then 0 ≤ g < n.

Now we separate the variables according to the power of p dividing

their coefficients in the degree n equation. Define the set

V = {i : bi = 0}

and for 0 ≤ g < n, define the sets

Ug = {i : pg ‖ bi}.
10



For each g, if we have |Ug| ≥ n+ 1, then by Lemma 2 we can find two

coefficients bi and bj and an element ζ ∈ Zp such that bi = ζnbj. Hence

we can solve the equation

(2) bix
n
i + bjx

n
j = 0

by setting xi = 1 and xj = −ζ. Using Lemma 2 repeatedly, we see that

we can find at least (|Ug|−n)/2 pairwise disjoint pairs of variables xi, xj

such that the equation (2) has a nontrivial solution in Zp. Therefore,

after possibly relabeling variables, we can rewrite the degree n equation

in (1) as

b1x
n
1 + b2x

n
2 + · · ·+ b2N−1x

n
2N−1 + b2Nx

n
2N

+ b2N+1x
n
2N+1 + · · ·+ b2N+|V |x

n
2N+|V |

+ b2N+|V |+1x
n
2N+|V |+1 + · · ·+ bsx

n
s = 0,

where for i = 1, . . . , N there exist nonzero p-adic numbers y2i−1 and

y2i such that

b2i−1y
n
2i−1 + b2iy

n
2i = 0,

and for i = 2N + 1, . . . , 2N + |V | we have bi = 0.

Next, for i = 1, . . . , N , we set x2i−1 = y2i−1Yi and x2i = y2iYi. Also,

we set xi = Yi−N when 2N + 1 ≤ i ≤ 2N + |V | and set xi = 0 when
11



i > 2N+ |V |. Then we see that the degree n equation in (1) is satisfied

for any choice of Y1, . . . , YN+|V |, and that if at least one of the Yi is

nonzero then we have a nontrivial solution of this equation.

After assigning the variables in this manner, the degree k equation

in (1) becomes

(3) d1Y
k
1 + · · ·+ dN+|V |Y

k
N+|V | = 0

for some coefficients d1, . . . , dN+|V |. Note that if we can solve (3) non-

trivially, then this will immediately lead to a nontrivial solution of (1).

The number of variables involved in (3) is

N + |V | ≥ |V |+
n−1∑
g=0

|Ug| − n
2

≥ s

2
−

n−1∑
g=0

n

2

≥ s

2
− n2

2

≥ k2 + 1

2
.

Finally, noting that (3) is a homogeneous additive equation of odd de-

gree k ≥ 7 in at least (k2 + 1)/2 variables, we see that Theorem 3

implies that this equation has a nontrivial solution in Qp. As men-

tioned above, this implies that the original system (1) has a nontrivial
12



solution. Hence the proof of this case of Theorem 2 will be complete

once Theorem 3 is established.

3. The Proof of Theorem 3

3.1. Preliminaries. The goal of this section is to prove Theorem 3.

In addition to being interesting in its own right, this will complete the

proof of Theorem 2 (except for the case when k = 5). For the majority

of our work, our strategy is to bound Γ∗p(k) by showing that all additive

forms of degree k in sufficiently many variables have a nonsingular zero

modulo a suitable power of p, and then using Hensel’s Lemma to lift

this to a zero in Zp. We note that some of our work here overlaps with

results found in [10]. There, a similar congruence result is shown, with

the restrictions that the congruences are modulo p (instead of possibly

modulo a power of p) and that gcd(k, p− 1) 6= (p− 1)/2.

In order to guarantee that our forms have nonsingular zeros modulo

powers of p, we must employ a normalization process which we now

describe. Suppose that we have an additive form

(4) F (x) = a1x
k
1 + a2x

k
2 + · · ·+ asx

k
s ,
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and we wish to solve the equation

(5) F (x) = a1x
k
1 + a2x

k
2 + · · ·+ asx

k
s = 0.

Clearly, if ai=0 for some i, then the equation (5) has a nontrivial solu-

tion. Hence we may assume that ai 6= 0 for all i. Now, we say that a

polynomial G(x) is equivalent to F (x) if there exists a form

F (l1x1, . . . , lsxs)

which is a (nonzero) constant multiple of G. Obviously, G has a non-

trivial zero if and only if F does. We now quote a lemma of Davenport

& Lewis showing that F is equivalent to a form with many coefficients

nonzero modulo small powers of p. This is Lemma 3 of [7].

Lemma 3. An additive form as in (4) is equivalent to one of the shape

G = G0 + pG1 + · · ·+ pk−1Gk−1,

where each Gi is an additive form in mi variables, and each variable

in each Gi has a coefficient not divisible by p, and where we also have

m0 + · · ·+mi−1 ≥ is/k

for 1 ≤ i ≤ k.
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Since s ≥ (k2 + 1)/2, this implies that we have m0 ≥ (k + 1)/2 and

m0 +m1 ≥ k + 1.

As stated above, our goal is to solve the equation (5) modulo a

suitable power of p, and then lift the solution to a solution in Zp. We

now state a version of Hensel’s Lemma which allows us to do this.

Lemma 4. Suppose that pτ ‖ k, and define γ = γ(k, p) by

γ =


1 if τ = 0

τ + 1 if τ > 0 and p > 2

τ + 2 if τ > 0 and p = 2.

Consider a congruence of the form

(6) a1x
k
1 + · · ·+ atx

k
t ≡ 0 (mod pγ).

If this equation has a solution such that at least one variable not divis-

ible by p has a coefficient not divisible by p, then this solution lifts to a

nontrivial solution in Qp.

We will refer to a solution of (6) of the type described in the Lemma

as a nonsingular solution. When we use this lemma, we will typically

assume that none of the coefficients are divisible by p, so that any so-

lution with any variable not divisible by p is nonsingular.
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We now state three results which we will use to guarantee that certain

congruences have nonsingular solutions. The first of these is due to

Dodson [9], and will be used for small primes.

Lemma 5. Suppose that −1 is a k-th power residue modulo pγ. Then

the congruence (6), with all coefficients not divisible by p, has a non-

singular solution whenever we have 2t > pγ.

Our second lemma for solving congruences also can be found in [9].

While it is not explicitly stated as a lemma, the result appears (in a

slightly different form) in the proof of Lemma 2.4.1 of [9].

Lemma 6. The congruence

a1x
k
1 + · · ·+ atx

k
t ≡ 0 (mod p),

with all coefficients not divisible by p, has a nonsingular solution when-

ever we have

p > (d− 1)(2t−2)/(t−2),

where d = (k, p− 1).

Our last lemma about congruences is the well-known Chevalley’s

theorem [5]. While this theorem can of course be extended to systems

of equations of any degrees, we only state it in a form that we need.
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Lemma 7. Suppose that f(x1, . . . , xt) is a polynomial of (total) degree

d with no constant term over a finite field Fp. If t > d, then the equation

f(x) = 0 has a nontrivial solution in Fp.

The next lemma is due to Tietäväinen [16]. Although this lemma is

not explicitly stated in [16], it is obvious that Tietäväinen wants the

reader to infer this result from his Lemma 3 and the remarks preceding

that lemma.

Lemma 8. If k is odd, then we have Γ∗(k) ≤ 1 + k(t− 1), where t is

the smallest number satisfying

(7) 2t−3 ≥ t2k.

This definition of t guarantees that for all primes p, the congruence (6)

has a nonsingular solution. It is well-known that

Γ∗(k) ≤ 1 + k(t− 1)

for any t with this property (see for example Lemma 6.4 of [15] or

Lemma 4.2.1 of [9]). Tietäväinen’s contribution was to show that we

can take t as in (7). We note for later use that the above formula

can be slightly extended. If tp represents a number of variables which

guarantees that (6) has a nonsingular solution for a fixed prime p, then
17



we have

Γ∗p(k) ≤ 1 + k(tp − 1).

Our final lemma is due to Norton [15]. For the degrees for which

we are evaluating Γ∗(k) exactly, this lemma shows that our proposed

values are lower bounds for this function.

Lemma 9. The following values of Γ∗(k) hold:

Γ∗(13) = 53 or 66

Γ∗(15) = 61, 76, or 91

Γ∗(17) = 52, 69, 86, or 103

Γ∗(19) = 58, 77, 96, or 115

Γ∗(21) = 106, 127, or 148

Γ∗(23) = 116, 139, or 162

Γ∗(25) = 101, 126, 151, or 176.

3.2. The proof when k ≥ 31. When k ≥ 31, the proof of Theorem 3

is a trivial corollary of Lemma 8. It is not hard to see that if k ≥ 31 then

the number t defined in (7) is at most (k+1)/2. One then immediately

finds that

Γ∗(k) ≤ 1 + k

(
k + 1

2
− 1

)
<
k2 + 1

2
.
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This completes the proof for large values of k. We note that this bound

is not best possible for large odd k. In fact, the main theorem of [16]

is that

lim sup
k→∞
k odd

Γ∗(k)

k log k
=

1

log 2
.

Thus, for large odd degrees, Γ∗(k) is much smaller than the bound in

Theorem 3.

3.3. The proof when k ≤ 29. For the remaining cases, Tietäväinen’s

bound does not suffice for our purposes, and so we use other methods

instead. The values Γ∗(7) = 22 and Γ∗(11) = 45 appear to have first

been given by Bierstedt [2]. These values were independently discov-

ered by Norton [15], who also gave the value Γ∗(9) = 37. Dodson also

discovered independently the values of Γ∗(7) and Γ∗(9), stating in [9]

that these values can be determined using the results of that paper,

although he does not give a proof.

For each k, write s(k) for our proposed value of (or bound on) Γ∗(k).

Note that the bounds claimed for Γ∗(27) and Γ∗(29) are smaller than

(272+1)/2 and (292+1)/2, respectively. Lemma 9 shows that these are

lower bounds when k ≤ 25, so we only need to show that Γ∗(k) ≤ s(k)

for each k. By Lemma 3, we may assume that for each degree, there
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are at least t(k) = ds(k)/ke variables in our form whose coefficients

are not divisible by k. Suppose without loss of generality that these

variables are x1, . . . , xt(k), and consider the congruence (6), using only

these variables. According to Lemma 4, if we can solve this congru-

ence with at least one variable not divisible by p, then we can lift this

solution to a nontrivial p-adic solution of (5).

Suppose for now that k = 29. With t(29) = 11, Lemma 5 shows

that we can solve the congruence (6) whenever we have 211 > pγ. We

have γ = 1 for all primes except p = 29, when we have γ = 2, and

so we can see that there are nontrivial p-adic solutions of (5) for all

p < 2048. Next we use Lemma 6 to show that we can find p-adic

solutions of (5) for all sufficiently large p. For p > 29, we only need

to have solutions for congruences modulo p, as in the statement of the

lemma. With t(29) = 11, Lemma 6 tells us that the congruence (6) has

a nontrivial solution whenever p > 1644, and hence Lemma 4, along

with the relation Γ∗(k) ≤ 1 + k(t− 1) (see Lemma 8 and the remarks

following this lemma) says that the equation (5) has nontrivial p-adic

solutions for these primes. If we apply this reasoning to all the degrees

under consideration, we obtain the results in the table below. Since we
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will need it later, we also include information for k = 5, with s(5) = 11.

k t(k) We have Γ∗p(k) ≤ s(k) when

5 3 γ = 1 and either p < 8 or p > 256

13 5 γ = 1 and either p < 32 or p > 754

15 5 either p < 32 or p > 1138

17 4 either p < 16 or p > 4096

19 4 either p < 16 or p > 5382

21 6 either p < 64 or p > 1788

23 6 γ = 1 and either p < 64 or p > 2270

25 5 γ = 1 and either p < 32 or p > 4792

27 11 all values of p

29 11 all values of p

For k = 27 and k = 29, we have Γ∗p(k) ≤ s(k) for all primes, and so for

these degrees the proof is complete.

We can deal with many of the remaining primes without using a

brute force computation. Consider the pairs of k and p for which γ = 1

and p 6≡ 1 (mod k), and note that for these pairs we have (k, p−1) < k.

We can handle most of these situations easily. The key observation is
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that if we write d = (k, p− 1), then the set of d-th powers modulo p is

the same as the set of k-th powers modulo p. Hence, instead of solving

the congruence (6), we may solve the congruence

(8) a1x
d
1 + · · ·+ atx

d
t ≡ 0 (mod pγ)

instead. If it happens that d = 1 or d = 3, then by Lemma 7, we

can solve (8) nontrivially whenever t ≥ d+ 1. Since this is the case for

every value of k we are considering, the proof is complete in these cases.

If we are in any other situation - that is, if γ ≥ 2 or if γ = 1 and

(k, p − 1) 6∈ {1, 3} - then we show computationally that nontrivial p-

adic solutions always exist. We note that in any remaining situation

where γ ≥ 2, we have k = pτ . In this case, we need to solve congru-

ences modulo powers of p, and so we note that the sets of k-th powers

modulo pγ and (φ(pγ), k)-th powers modulo pγ are identical. But since

k = pτ , we now have (φ(pγ), k) = k, and the exponent in (6) cannot be

reduced. Therefore we set d = k in (8), so that (8) and (6) are identical.

Once again, for a fixed prime p and odd degree k, we wish to

show computationally that the congruence (8), where each coefficient is

nonzero modulo p, has a nonsingular solution for each possible choice
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of coefficients. To limit the computing time required, we would like

to reduce the number of congruences for which we need to compute

solutions. Our method for doing this is very similar to that used by

Bierstedt [2]. Observe that by dividing the entire congruence by a1, we

may assume that a1 ≡ 1 (mod pγ). Next, note that as in Section 2.2, if

we can write ai ≡ ζdaj (mod pγ) for some indices i, j, then we can get

a nonsingular solution of (8) by setting xi = 1, xj = −ζ, and all other

variables equal to 0. Hence we may assume that all of the coefficients

of (8) are in different cosets of (Z/pγZ)×/(Z/pγZ)×d.

Moreover, suppose that (8) has a nonsingular solution for some spe-

cific choice of coefficients, and let ci, ζi be numbers nonzero modulo p

such that

ci ≡ ζdi · ai (mod pγ), (1 ≤ i ≤ t).

Then we can see that the congruence

c1y
d
1 + · · ·+ cty

d
t ≡ 0 (mod pγ)

has a nonsingular solution by simply setting yi ≡ xi/ζi (mod pγ).

Hence, for each coset of (Z/pγZ)×/(Z/pγZ)×d, we may pick one repre-

sentative in (Z/pγZ)× and assume that it is the only element of this
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coset which may appear in (8) as a coefficient.

In light of these observations, we use the following strategy in our

calculations. Noting that (Z/pγZ)×/(Z/pγZ)×d is cyclic, we first find

a number g such that the set {1, g, g2, . . . , gd−1} contains one repre-

sentative of each coset of (Z/pγZ)×/(Z/pγZ)×d. Hence we may as-

sume that a1 = 1 and that (a2, . . . , at) = (gc2 , . . . , gct), where we have

1 ≤ c2 < c3 < · · · < ct ≤ d − 1. This greatly reduces the number

of congruences that need to be solved. Each of these congruences is

solved by a brute-force approach, systematically testing each possible

combination of d-th powers until a solution is found. We save some

computational time by making a list of the d-th powers modulo pγ in

advance so that we don’t have to repeatedly compute xdi for each possi-

ble choice of each variable. When these computations were completed,

we found that in each case except k = 25, p = 5 and k = 5, p = 5, 11,

the number of variables guaranteed to have coefficients not divisible by

p was sufficient to guarantee that the congruence (8) has a nontrivial

solution.
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If we have k = 25 and p = 5, then it turns out that there are 10

choices of (c2, . . . , c5) for which the equation (8) has no nontrivial so-

lutions. Fortunately, the normalization process tells us that we have

at least 9 variables whose coefficients are not divisible by 25. To each

set of coefficients for which we did not obtain solutions previously, we

added one more variable, whose coefficient may or may not be divisible

by 5, but is nonzero modulo 25. We then found computationally that

for any possible coefficient (modulo 125) of this new variable, the con-

gruence (8) did have nontrivial solutions. Moreover, there was always

a solution in which at least one nonzero variable had a coefficient not

divisible by 5. Hence, even in these “bad” cases, we are still able to

guarantee that (5) has nontrivial 5-adic solutions. This completes the

proof of Theorem 3.

Although it is not needed for the proof of Theorem 3, we now com-

plete the proof of the “folklore” result mentioned in the introduction. If

k = 5 and p = 11, the computer check reveals that there are essentially

three congruences of the shape (6) with t = 3 which have no nontrivial

solutions, where by “essentially” we mean that every congruence of this

form with no solutions can be obtained by a combination of multiplying

the entire equation by a constant and multiplying coefficients by fifth
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powers. These congruences are

x5
1 + 2x5

2 + 4x5
3 ≡ 0 (mod 11)

x5
1 + 2x5

2 + 5x5
3 ≡ 0 (mod 11)

x5
1 + 5x5

2 + 8x5
3 ≡ 0 (mod 11).

The first of these exceptional congruences is the one found by Gray

[11]. We believe that the other two are new. If we add one more vari-

able with coefficient not divisible by 11 to any of these forms, then

the resulting congruence does have nontrivial solutions. This yields

Γ∗11(5) = 16.

For the prime p = 5, a brute-force computation shows that if we have

three variables whose coefficients are not divisible by 5, and one addi-

tional variable whose coefficient is nonzero modulo 25 (and may or may

not be divisible by 5), then the congruence (6) has solutions regardless

of the coefficients. Normalization guarantees that these variables exist

whenever s ≥ 11, and hence this gives us Γ∗5(5) ≤ 11. Thus we have

verified that Γ∗(5) = 16 and shown computationally that Γ∗p(5) ≤ 11

for all primes except p = 11.
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4. The Proof of Theorem 2 when k = 5

We now complete the proof of Theorem 2 by treating the remaining

cases. As mentioned in the introduction, the case k = 3 is already es-

sentially done in the literature, so we only need to treat the case k = 5.

We will use essentially the same strategy as in Section 2.2, except that

we will now treat different primes separately. Note that for a particular

prime p, the proof given in Section 2.2 works as long as we have either

Γ∗p(k) ≤ (k2 + 1)/2 or Γ∗p(n) ≤ (n2 + 1)/2. Since we have shown in

Section 3.3 that Γ∗p(5) < (52 + 1)/2 whenever p 6= 11, the theorem is

true for these primes.

When p = 11, we deal with the case n = 3 through the following

lemma. While the result is well-known, we cannot recall seeing it in

print before, and therefore give a proof.

Lemma 10. Let k be a positive integer, and suppose that p is a prime

with p - k and (k, p− 1) = 1. Then Γ∗p(k) = k + 1.

Proof. As indicated in the previous section, the hypotheses of this

lemma imply that γ = 1 and that every residue modulo p is a k-th

power. Hence the congruence (8) is linear, and we may therefore take
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tp = 2 for this prime. Thus we have

Γ∗p(k) ≤ k(tp − 1) + 1 = k + 1

by the remarks following Lemma 8. To see that this is actually an

equality, note that the equation

xk1 + pxk2 + p2xk3 + · · ·+ pk−1xkk = 0

in k variables has no nontrivial p-adic solutions.�

This lemma immediately gives us Γ∗11(3) = 4 < (32 + 1)/2, completing

the proof that Γ∗(5, 3) ≤ 35.

Finally, when n = 1, consider the form of degree 5. If this form

has at least two coefficients equal to 0, then we can nontrivially solve

the linear form using only these variables, giving a nontrivial solu-

tion of the system. Otherwise, the form of degree 5 has at least 26

nonzero coefficients, and by Lemma 3, we may assume that there are

six variables (at least) with integer coefficients not divisible by 11. Sup-

pose that these are x1, . . . , x6, and define F1 = a1x
5
1 + · · · + a6x

5
6 and

F2 = a7x
5
7 + · · · + a27x

5
27. Since none of the coefficients of F1 are di-

visible by 11, our above computations for k = 5 and p = 11 show that

there is a vector y = (y1, . . . , y6) ∈ (Z11)
6 such that F1(y) = 0. Also,
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since F2 contains 21 variables, there is a vector z = (z7, . . . , z27) such

that F2(z) = 0. For 1 ≤ i ≤ 6 write xi = yiY1, and for 7 ≤ i ≤ 27

write xi = ziY2. Then as in Section 2.2, the linear form becomes a form

in two variables. This form has a nontrivial solution, which yields a

nontrivial solution of the system. This completes the proof of Theorem

2.
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